Name \qquad
Dr. Cary Willard
Exam 2A
March 18, 2009

	Points Earned	Points Possible
Page 1 multiple choice		20
Page 2		24
Page 3		26
Page 4		24
Page 5		12
Total		106

Note: All work must be shown to receive credit. On calculation problems show answer with the correct number of significant figures using scientific notation if necessary.

Avogadro's number $6.022 \times 10^{23} / \mathrm{mol}$

PERIODIC CHART

IA																VIIA	NOBLE GASES
$\begin{gathered} \hline 1 \\ \mathbf{H} \\ 1.008 \\ \hline \end{gathered}$	IIA											IIIA	IVA	VA	VIA	$\begin{gathered} 1 \\ \mathbf{H} \\ 1.008 \end{gathered}$	2 He 4.002
$\begin{gathered} \hline 3 \\ \mathbf{L i} \\ 6.941 \\ \hline \end{gathered}$	 4 Be 9.012	Transition Metals»										5 B 10.81	$\begin{gathered} \hline 6 \\ \mathbf{C} \\ 12.01 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 7 \\ \mathbf{N} \\ 14.01 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ 0 \\ 16.00 \\ \hline \end{array}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 19.00 \\ \hline \end{gathered}$	
$\begin{gathered} \hline 11 \\ \mathrm{Na} \\ 23.00 \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.30 \\ \hline \end{gathered}$	IIIB	IVB	VB	VIB	VIIB	ÉİÍIVIIIBİİİİ»			IB	IIB	$\begin{array}{\|c\|} \hline 13 \\ \text { Al } \\ 27.00 \\ \hline \end{array}$	$\begin{array}{r} 14 \\ \mathrm{Si} \\ 28.09 \\ \hline \end{array}$	$\begin{gathered} \hline 15 \\ \mathbf{P} \\ 30.97 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \\ \hline \end{gathered}$	$\begin{array}{r} 17 \\ \text { CI } \\ 35.45 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18 \\ \mathbf{A r} \\ 39.95 \\ \hline \end{array}$
$\begin{array}{r} 19 \\ \mathbf{K} \\ 39.10 \\ \hline \end{array}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} 21 \\ \mathrm{Sc} \\ 44.96 \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.90 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 25 \\ \mathbf{M n} \\ 54.94 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 26 \\ \mathrm{Fe} \\ 55.85 \\ \hline \end{array}$	$\begin{gathered} 27 \\ \mathrm{Co} \\ 58.93 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 28 \\ \mathrm{Ni} \\ 58.70 \\ \hline \end{array}$	$\begin{array}{r} 29 \\ \mathrm{Cu} \\ 63.55 \\ \hline \end{array}$	$\begin{array}{r} 30 \\ \mathbf{Z n} \\ 65.38 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 31 \\ \text { Ga } \\ 69.72 \\ \hline \end{array}$	$\begin{gathered} 32 \\ \mathrm{Ge} \\ 72.59 \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 36 \\ \mathbf{K r} \\ 83.80 \\ \hline \end{array}$
$\begin{gathered} \hline 37 \\ \mathbf{R b} \\ 85.47 \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{gathered}$	$\begin{gathered} \hline 41 \\ \mathrm{Nb} \\ 92.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 42 \\ \text { Mo } \\ 95.94 \\ \hline \end{gathered}$	43 Tc (99)	$\begin{array}{\|c\|} \hline 44 \\ \mathrm{Ru} \\ 101.1 \\ \hline \end{array}$	$\begin{gathered} 45 \\ \text { Rh } \\ 102.9 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 46 \\ \text { Pd } \\ 106.4 \\ \hline \end{array}$	$\begin{gathered} \hline 47 \\ \mathrm{Ag} \\ 107.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { Cd } \\ 112.4 \\ \hline \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.8 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 50 \\ S n \\ 118.7 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 51 \\ \mathbf{S b} \\ 121.8 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 52 \\ \mathbf{T e} \\ 127.6 \\ \hline \end{array}$	$\begin{gathered} 53 \\ \text { I } \\ 126.9 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 54 \\ \mathbf{X e} \\ 131.3 \\ \hline \end{array}$
$\begin{gathered} 55 \\ \text { Cs } \\ 132.9 \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.3 \end{gathered}$	$\begin{gathered} 57 \\ \text { La } \\ 138.9 \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.5 \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ 180.9 \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ 183.9 \end{gathered}$	$\begin{gathered} \hline 75 \\ \operatorname{Re} \\ 186.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.2 \end{gathered}$	$\begin{array}{r} 78 \\ \mathbf{P t} \\ 195.1 \end{array}$	$\begin{gathered} 79 \\ \mathbf{A u} \\ 197.0 \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.6 \end{gathered}$	$\begin{array}{\|c} 81 \\ \text { TI } \\ 204.4 \end{array}$	$\begin{gathered} 82 \\ \mathbf{P b} \\ 207.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 83 \\ \mathrm{Bi} \\ 209.0 \\ \hline \end{array}$	84 Po (209)	$\begin{gathered} 85 \\ \mathbf{A t} \\ (210) \end{gathered}$	$\begin{gathered} 86 \\ \mathbf{R n} \\ (222) \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \mathrm{Fr} \\ (223) \end{gathered}$	$\begin{gathered} 88 \\ \text { Ra } \\ 226.0 \\ \hline \end{gathered}$	$\begin{array}{r} 89 \\ \text { Ac } \\ 227.0 \end{array}$	$\begin{gathered} 104 \\ \mathbf{R f} \\ (261) \\ \hline \end{gathered}$	$\begin{gathered} \hline 105 \\ \text { Db } \\ (262) \\ \hline \end{gathered}$	$\begin{gathered} 106 \\ \mathbf{S g} \\ (263) \end{gathered}$	$\begin{gathered} 107 \\ \text { Bh } \\ (262) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 108 \\ \text { Hs } \\ (265) \end{array}$	$\begin{gathered} 109 \\ \mathbf{M t} \\ (268) \\ \hline \end{gathered}$	$\begin{gathered} 110 \\ ? ? \\ \text { (???) } \end{gathered}$								

Lanthanide series

Actinide series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Part 1 - Multiple Choice (20 points)

1. Each atom of a specific element has the same
a. Atomic mass
b. Number of neutrons
c. Number of protons
d. Mass number
e. None of the above
2. What charge does an anion possess?
a. Positive
b. Negative
c. Neutral
d. Unable to determine
3. Which pair of symbols represents isotopes?
a. ${ }_{11}^{22} \mathrm{Na}$ and ${ }_{12}^{23} \mathrm{Na}$
b. ${ }_{3}^{7} L i$ and ${ }_{3}^{6} L i$
c. ${ }_{29}^{63} \mathrm{Cu}$ and ${ }_{64}^{29} \mathrm{Cu}$
d. ${ }_{24}^{12} \mathrm{Mg}$ and ${ }_{26}^{12} \mathrm{Mg}$
e. all of the above
4. The mass of an atom is primarily determined by the mass of its
a. Protons
b. Neutrons
c. Electrons
d. Both neutrons and electrons
e. Both protons and neutrons
5. An atom of atomic number 53 and mass
number 127 contains how many neutrons
a. 53
b. 74
c. 127
d. 180
6. Which of the following contains the largest number of moles?
a. $\quad 1.0 \mathrm{~g} \mathrm{Li}$
b. $\quad 1.0 \mathrm{go} \mathrm{Na}$
c. 1.0 g Al
d. 1.0 g Ag
7. The reaction
$\mathrm{BaCl}_{2}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \rightarrow \mathrm{BaCO}_{3}+2 \mathrm{NH}_{4} \mathrm{Cl}$
is an example of
a. A combination reaction
b. A decomposition reaction
c. A single displacement reaction
d. A double displacement reaction
8. The reaction
$2 \mathrm{PbO}_{2} \rightarrow 2 \mathrm{PbO}+\mathrm{O}_{2}$
is an example of
a. A combination reaction
b. A single displacement reaction
c. A decomposition reaction
d. A double displacement reaction
e. Unable to determine

Given the activity series $\mathrm{Mg}>\mathrm{Zn}>\mathrm{Cu}>\mathrm{Ag}$, predict the products of the following reactions.
9. $\mathrm{Mg}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow$
a. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Cu}$
b. $\mathrm{MgNO}_{3}+\mathrm{Cu}$
c. $\mathrm{MgCu}+2 \mathrm{NO}_{3}$
d. No reaction
e. Unable to determine based on information provided
10. $\mathrm{Ag}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow$
a. $\mathrm{AgNO}_{3}+\mathrm{Zn}$
b. $\mathrm{Ag}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{Zn}$
c. $\mathrm{Ag}_{2} \mathrm{Zn}+\mathrm{NO}_{3}$
d. No reaction
e. Unable to determine based on information provided

Part 2 - Nomenclature (8 points) Fill in the following table with the correct IUPAC name or formula

IUPAC Name	Chemical Formula
Magnesium sulfate	
Nickel(II) iodide	
Ammonium nitrite	
Sodium perchlorate	$\mathrm{Li}_{3} \mathrm{PO}_{4}$
	$\mathrm{Ag}_{2} \mathrm{~S}$
	$\mathrm{Ca}(\mathrm{OH})_{2}$
	NO_{2}

Part 3 - Problems (68 points)

1. (4 points) What particles in an atom contain practically all of its mass?
2. (4 points) How is it possible for there to be more than one kind of atom of the same element?
3. (4 points) Explain why the name for MgCl_{2} is magnesium chloride but the name for CuCl_{2} is copper(II) chloride.
4. (4 points) What is meant by the physical state of a substance? What symbols are used to represent these physical states and what does each symbol mean?
5. (6 points) Balance the equations below
a.
$\mathrm{Al}+$
$\mathrm{O}_{2} \rightarrow$
$\mathrm{Al}_{2} \mathrm{O}_{3}$
b. $\quad \mathrm{H}_{3} \mathrm{PO}_{4}+\quad \mathrm{Zn}(\mathrm{OH})_{2} \rightarrow \quad \mathrm{H}_{2} \mathrm{O}+\quad \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
6. (20 points) Given a 9.52 g sample of the acetylsalicylic acid $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ or aspirin, calculate the following:
a. molar mass of aspirin
b. moles of aspirin
c. moles of carbon atoms
d. molecules of aspirin
e. number of oxygen atoms
7. (24 points) Trinitrotoluene, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$, is an explosive otherwise known as TNT. The equation for its combustion is

$$
4 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}+33 \mathrm{O}_{2} \longrightarrow 28 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{~N}_{2}
$$

a. How many moles of oxygen are required to react with $3.40 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$.
b. How many grams of carbon dioxide will be produced when 4.68 mol of $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$ are burned?
c. If 1120 grams of CO_{2} are produced in part b , what is the percent yield of the reaction?
d. How many molecules of TNT will react with 132 molecules of oxygen gas?
e. How many molecules of water will be produced by the combustion of 3.00 g of TNT?
f. How many moles of CO_{2} will be produced by the reaction of 7.00 moles of TNT with 72.0 moles of oxygen gas?
8. (7 points) Calculate the empirical formula of cacodyl which is composed of $22.88 \% \mathrm{C}$, $5.76 \% \mathrm{H}$, and 71.36% As.
9. (5 points) A compound with empirical formula $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ has a molar mass of $132 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula for the compound.

